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Abstract

We present a novel moving overset grid scheme for the accurate and efficient long-time simulation of an air bubble

displacing a non-Newtonian fluid in the prototypical thin film device, the Hele–Shaw cell. We use a two-dimensional

generalization of Darcy�s law that accounts for shear thinning of a non-Newtonian fluid. In the limit of weak shear

thinning, the pressure is found from a ladder of two linear elliptic boundary value problems, each to be solved in the

whole fluid domain. A moving body fitted grid is used to resolve the flow near the interface, while most of the fluid

domain is covered with a fixed Cartesian grid. Our use of body-conforming grids reduces grid anisotropy effects and

allows the accurate modeling of boundary conditions.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Consider two parallel glass plates separated by a thin layer of fluid and with a small hole drilled at the

center of the top plate (Fig. 1). As air is pumped slowly through the hole into the gap an air bubble expands

and displaces the fluid. The initially circular interface separating the expanding air bubble from the fluid

will start to develop structure. This is called the Saffman–Taylor instability [34]. Fingers of air will advance
into the fluid while other parts of the interface cease to move, forming narrow inlets of fluid referred to as

fjords [30]. The ‘‘viscous fingers’’ in a Newtonian fluid have a tendency to split at their tips and so form new

fingers, eventually resulting in a densely branched interfacial structure. This morphology has also been

observed in careful numerical simulations [21].

The Saffman–Taylor instability is a prototypical free-boundary problem that shares many of the diffi-

culties often encountered in simulations of dynamic boundaries in fluids: the incompressibility condition

leads to an elliptic (Laplace) equation for the pressure that must be solved in the time-dependent domain
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Fig. 1. The Hele–Shaw cell is the prototypical thin gap flow device.
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created by the free boundary dynamics, and the capillary forces at the interface make the time evolution
problem very stiff. There is also a close analogy between the Saffman–Taylor instability of driven New-

tonian fluid with quasi-static solidification (and the Mullins–Sekerka instability [26]), as well as many other

physical problems, such as electrochemical deposition [5]. Hence, this is an excellent test case for numerical

methods used to simulate the dynamics of moving interfaces.

In this paper, we develop a numerical method for studying the Saffman–Taylor instability when the fluid

being displaced by air is non-Newtonian – in particular, we focus on ‘‘shear-thinning’’ fluids which are

characterized by a viscosity that is a decreasing function of the local shear-rate [16]. Experiments performed

with complex liquids such as liquid crystals [7,8], polymer solutions and melts [39,40], clays [12], and foams
[29], have shown that viscous fingers displacing a shear-thinning non-Newtonian fluid can have a dra-

matically different character than in Newtonian fluids: instead of repeated tip-splitting of the viscous fin-

gers, one sees thin finger-like structures with reduced tip-splittings. This apparent stabilization of the tip

leads to a fingering pattern for the shear-thinning case that is often more dendritic in appearance, and with

significant side-branching. These features are absent in the case of Newtonian flow.

Kondic et al. [24,25] developed a non-Newtonian Darcy�s law that describes Hele–Shaw flow in shear-

thinning fluids governed by a generalized Navier–Stokes equation [4]. Unlike the Newtonian case, there is no

reduction of the problem through a boundary integral treatment, and the pressure must be determined ev-
erywhere in the flow domain. Kondic et al. [25] and Fast, Kondic, Shelley and Palffy-Muhoray [16] performed

fully non-linear simulations of the non-Newtonian Saffman–Taylor instability using a Lagrangian grid

method with an imposed fourfold symmetry and a finite difference discretization of the interfacial quantities

and the fluid equations. Their computations were limited to the early stages of the Saffman–Taylor instability

due to mesh distortion. However, their simulations did suggest that shear-thinning can cause reduced tip-

splitting, and yield viscous fingering patterns with strong resemblance to interfacial motifs from solidifica-

tion. Fast et al. [16] showed, among other things, that the non-Newtonian Darcy�s law could be derived for a

broad class of viscoelastic fluid equations, under appropriate constraints on the Weissenberg number.
The purpose of this paper is to develop an accurate and efficient numerical method for studying viscous

fingering in weakly shear-thinning fluids and that allows long time simulation without imposed symmetries.

Level set or immersed boundary methods are also good candidates for the boundary dynamics, but can

suffer from anisotropy errors arising from the underlying grid [23], while Lagrangian grid methods [16,25]

can suffer from grid distortion. We strike a balance between these two extremes by using the moving overset

grid method.

1.1. The moving overset grid method

We introduce the moving overset grid method which is the key new result of this paper. An overset grid is

a collection of structured component grids, and the interpolation conditions used to connect the component
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grids. In our computations, we use three component grids: a Cartesian background grid, an annular

outermost grid, and a thin body-conforming grid near the interface (Fig. 2).

To achieve a highly accurate surface representation we track the free boundary explicitly, and use a body
fitted grid next to the moving boundary (Fig. 2). Fig. 3 shows the viscosity in a computation of the non-

Newtonian Saffman–Taylor instability using our moving overset grid method. As the boundary moves and

deforms, we adapt the shape of the body fitted grid to follow the shape and motion of the moving fluid

interface (Fig. 4). This grid structure has the advantage that boundaries are represented explicitly and hence

boundary conditions can be modeled accurately. The method allows long time simulation of complex

viscous fingering patterns in non-Newtonian Hele–Shaw flow as seen in Figs. 3 and 4, and in Section 4.

Overset grids have been used previously in computations with rigid moving objects, but not for studying

deforming time-dependent boundaries (see e.g. [28] and the references therein).
In Section 3, we present the details of the numerical method, which couples an overset grid discretization

of the fluid equations to a Fourier based representation of the dynamic interface. The fluid velocity is

obtained from a set of Poisson problems for the pressure, and these equations are solved using second-order

accurate curvilinear grid finite differences and overset grids. All interfacial quantities, such as the curvature,

are evaluated using Fourier-space methods. We find that this leads to greater accuracy in resolving the

small length-scales of the interfacial dynamics. The method is formally second-order accurate. In Section 4,

we present several numerical experiments of a gas bubble displacing a fluid in a Hele–Shaw cell, and study

the resulting interfacial instability.
Fig. 2. A close-up of an overset grid used to discretize the fluid domain: an inner grid conforms to the interface, while a square

Cartesian grid is used to cover the majority of the computational domain. An annular grid is used near the outflow. These overlapping

components are joined by interpolation conditions.



Fig. 3. The viscosity field at t ¼ 3:4 in a moving overset grid computation of the Saffman–Taylor instability in a weakly non-New-

tonian fluid (We ¼ 0:55, a ¼ 0:15, Ca ¼ 500). The viscosity at the tips is lowered by the shear-thinning effect.

Fig. 4. A sequence showing a close up of the moving overset grids used to compute the interfacial shape in Fig. 3, at (a) t ¼1.56, (b)

t ¼1.76, (c) t ¼1.96.
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2. Non-Newtonian Hele–Shaw flow

We now summarize two-dimensional equations of motion for non-Newtonian Hele–Shaw flow. Full

details of the model are available in Fast et al. [16]. In Section 3, we develop a numerical method for the

resulting two-dimensional system of Eqs. (3)–(10) that models non-Newtonian viscous fingering.

A typical control parameter for a viscoelastic fluid is the non-dimensional shear-rate

We ¼ sU ð1Þ

b
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called the Weissenberg number [4]. Here s is a characteristic response time of the fluid, U is a characteristic

velocity of the flow and b is the gap width. We ¼ 0 gives a Newtonian flow, while for We > 0 the flow is non-

Newtonian. The non-Newtonian Darcy�s law derived in [16] is

u ¼ � rp

�lðWe2jrpj2Þ
; r � u ¼ 0: ð2Þ

Here u is the gap averaged longitudinal velocity, p is the fluid pressure, and �lðWe2jrpj2; aÞ is the gap-av-

eraged effective viscosity, depending on the squared pressure gradient, and on a shear-thinning parameter a.
When a ¼ 1, the fluid is Newtonian with a constant viscosity, and when a < 1, the viscosity decreases with

an increasing shear-rate. The effective viscosity, plotted in Fig. 5, is derived from the physical viscosity l.
An explicit form for �l, and some restrictions on a, are given in [16, Appendix A].

2.1. Weakly non-Newtonian model

We consider a weakly shear-thinning Hele–Shaw flow, We � 1. The weakly non-Newtonian model is

obtained by expanding the velocity u, pressure p, and Eq. (2) in a small We2 � 1 limit

u ¼ u0 þ We2u1 þOðWe4Þ; ð3Þ
p ¼ p0 þ We2p1 þOðWe4Þ; ð4Þ
0 0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

|

 ∆

α=1
α=0.5
α=0.30
α=0.15

α=0.15

|  p|
60

Weakly non-Newtonian,

0.2

1

p|

 ∆

Fig. 5. The effective viscosity �l for some typical values of a with We ¼ 1 compared to the weakly non-Newtonian approximation for

small jrpj. The inset shows the viscosity for larger values of the local shear-rate jrpj, whereas the large plot is a close-up of the region

where the weakly non-Newtonian approximation is valid. Changes in We rescale the abscissa.
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u0 ¼ �rp0; r � u0 ¼ 0; ð5Þ
u1 ¼ �rp1 � ~ajrp0j2rp0; r � u1 ¼ 0; ð6Þ

where ~a ¼ 3ð1� aÞ=20, and the viscosity has been approximated by

�lðWe2jrpj2Þ ¼ 1� 3ð1� aÞ
20

We2jrpj2 þOðWe4Þ: ð7Þ
2.2. Free surface boundary conditions

The pressure satisfies a jump condition at the interface separating the fluid and the gas. We use the

Young–Laplace condition

½p�C ¼ �Ca�1j ð8Þ

for comparison with earlier computations [16,21,25]. Here the modified capillary number is Ca ¼ 12e�2l0

U=c, l0 is the zero-shear rate viscosity, U is a characteristic lateral velocity, and c is the surface tension
of the fluid. More accurate boundary conditions have been derived for Newtonian fluids [20], and for

non-Newtonian fluids [13,32].

The interface C moves with the local fluid velocity according to the kinematic condition

ox

ot
ðb; tÞ ¼ ujxðb;tÞ; ð9Þ

where b is a Lagrangian parameter.

2.3. Outflow conditions

We consider flow in circular Hele–Shaw cell with radius Rout. At the outer edge of the cell ðr ¼ RoutÞ, we
impose on the pressure p ¼ p0 þ We2p1 a specified mass flux StðtÞ through the outflow condition

r̂ � u ¼ St
2pRout

; ð10Þ

where r̂ is a unit vector in the radial direction, and SðtÞ ¼ 2pð1þ tÞ. In terms of the pressure, the outflow

boundary condition at r ¼ Rout is

op0
or

¼ � St
2pRout

and
op1
or

¼ � 3ð1� aÞ
20

jrp0j2
op0
or

:

This leads to the bubble area growing at a specified rate.
3. Numerical scheme

In this section, we discuss the numerical scheme for simulating the evolution problem (3)–(10) when a
gas bubble expands into a weakly non-Newtonian fluid. The scheme is summarized as follows:

Step 1. Generate an overset grid and discretization: Given the boundary CðtnÞ at time tn, generate an

overset grid in the fluid domain exterior to CðtnÞ. Discretize the Poisson equations (11)–(14) for the pressure

fields p0 and p1.
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Step 2(a). Solve the Newtonian pressure equation:

Dp0 ¼ 0 in X; ð11Þ
p0jC ¼ �Ca�1j;
op0
or

ðx; tÞ ¼ � St
2pjxj at jxj ¼ Rout: ð12Þ

Step 2(b). Solve the non-Newtonian pressure correction equation:

Dp1 ¼ � 3ð1� aÞ
20

r � jrp0j2rp0
� �

in X; ð13Þ
p1jC ¼ 0;
op1
or

ðx; tÞ ¼ � 3ð1� aÞ
20

jrp0j2
op0
or

; at jxj ¼ Rout: ð14Þ

Step 3. Evaluate the velocity on C using Darcy’s law:

u0 ¼ �rp0; u1 ¼ �rp1 �
3ð1� aÞ

20
jrp0j2rp0;

u ¼ u0 þ We2u1:

Step 4. Evolve the interface C using the kinematic condition:

ox

ot
ðb; tÞ ¼ Uðb; tÞnðb; tÞ þ T ðb; tÞsðb; tÞ; ð15Þ

where s is the tangent vector to C, n is the normal vector, Uðb; tÞ ¼ n � uðxðb; tÞÞ is the normal velocity from

Darcy�s law, and T ðb; tÞ is an arbitrary tangential velocity to be set in the numerical scheme.

We now discuss the solution of each of the Steps 1–4 in detail.

Remarks. (1) The purely Newtonian case can be solved much more efficiently using boundary integral

methods (see for example [21]). In the non-Newtonian case here, the pressure field satisfies a Poisson

problem so boundary integral methods cannot be used.
(2) This problem shares many of the difficulties of simulating the strongly shear-thinning model (Eqs. (2),

(8)–(10)). In both cases, one must at each timestep generate the overset grid discretization of the fluid

domain, and solve large linear systems arising from discretizing elliptic equations. In the non-Newtonian

case, the pressure satisfies the non-linear boundary value problem (Eqs. (2), (8) and (10)), which must be

solved for in the whole moving domain. Since the problem is driven by the curvature of the boundaries,

high spatial resolution is required. Further, there is a severe stability constraint on the temporal stepsize. In

the present paper, we focus on capturing the motion of the interface in a long time simulation of weakly

shear-thinning flow. The general case of strongly shear-thinning flow is left for future work.

3.1. Overset grid generation and discretization

As the free interface C moves, the body fitted grid and the overset grid is regenerated at each timestep

(Sections 3.1.1 and 3.1.2). Given the overset grid, we discretize the pressure equations using curvilinear grid

finite-differences. (Section 3.1.3).

3.1.1. Moving overset grid generation

Our implementation uses the grid generation capabilities in the Overture C++ framework [6], which is

used to produce the overset grid at each time step, and the second-order discretization of the Laplace
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operator in the time-dependent fluid region. The algorithm used in Overture is based upon the original

CMPGRD algorithm [10] with major changes to improve robustness [19]. Typically, the amount of

computational time spent for overset grid generation at each time step is insignificant in comparison to the
pressure solve. For a detailed description of the overset grid generator, see [19].

3.1.2. Body fitted grid generation

The body-conforming grid is generated by marching outward from the interface C. The grid corresponds

to a uniform grid discretization of the the mapping

xðn; gÞ; 06 n6 1; 06 g6 2p;

where xð0; gÞ is the interface C, and the lines g � Const: are rays extending outwards from the bubble in the

normal direction (Fig. 6). Hyperbolic grid generation [9] is often used to produce such grids around
complicated geometries. In the present case, a simpler approach can be used. We generate the body fitted

grid by marching

xnðn; gÞ ¼ � 1ð � Cjðn; gÞÞnðn; gÞ þ T ðn; gÞsðn; gÞ ð16Þ

in the pseudo-time n starting from the interface C at n ¼ 0. Here C is a small constant, j is the curvature of

a gridline along n � Const:, nðn; gÞ is the normal vector, and sðn; gÞ is the tangent vector to the curve xðn; gÞ,
for n � Const: The normal velocity U ¼ �ð1� Cjðn; gÞÞ gives Eq. (16) a diffusive character [21], and has

been used previously for grid generation [35]. The tangential velocity T ðn; gÞ is chosen to maintain equi-

spacing in the g-direction (see [21] for details). To generate the body fitted grid on each time-step, we solve

Eq. (16) using a time evolution method similar to the one used in Section 3.3 (with t ¼ n, b ¼ g, see
Appendix B).

3.1.3. Finite difference discretization

An overset grid consists of structured, curvilinear component grids each defined by a mapping

xðr; tÞ ¼ Gðr; tÞ, where r ¼ ðr; sÞ, and 06 r; s6 1.

The derivatives of a function f with respect to the physical variables ðx; yÞ are transformed to derivatives

in the computational variables ðr; sÞ through the chain-rule

of
ox

¼ rx
o ~f
or

þ sx
o ~f
os

; ð17Þ
of
oy

¼ ry
o ~f
or

þ sy
o ~f
os

; ð18Þ
ξ

η
x( ξ, η)

Γ

Fig. 6. The body fitted grid is generated by marching outward from the interface C (see text).
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r2f ¼ ðr2x þ r2y Þ
o2 ~f
or2

þ 2ðrxsx þ rysyÞ
o2 ~f
oros

þ ðs2x þ s2yÞ
o2 ~f
os2

þ r2r
� � o ~f

or
þ r2s
� � o ~f

os
; ð19Þ

where ~f ðr; sÞ ¼ f ðxðr; sÞ; yðr; sÞÞ, and r2u ¼ uxx þ uyy . The inverse vertex derivatives rx; ry ; rxx; ryy ; sx; sy ; sxx;
and syy are computed from the mapping G that defines the component grid. The mapping method for finite-

difference discretization is obtained by discretizing the derivatives (17)–(19) in the computational variables

ðr; sÞ. We introduce a discretization of

ri ¼ iDr and sj ¼ jDs;

where 06 i6Nr, Dr ¼ 1=Nr, 06 j6Ns, and Ds ¼ 1=Ns. A discretized component grid is then given by
xi;j ¼ Gðri; sjÞ where 06 i6Nr, 06 j6Ns.

We define the basic difference operators in the s direction by

Ds
þfi;j ¼

fi;jþ1 � fi;j
Ds

; Ds
�fi;j ¼

fi;j � fi;j�1

Ds
; Ds

0fi;j ¼
fi;jþ1 � fi;j�1

2Ds
: ð20Þ

Second-order accurate centered approximations to the basic derivative operators are given by

of
os

ðri;jÞ ¼ Ds
0fi;j þ OðDs2Þ; ð21Þ
o2f
os2

ðri;jÞ ¼ Ds
þD

s
�fi;j þ OðDs2Þ: ð22Þ

Derivatives in the r direction are defined analogously. The discretized inverse vertex derivatives are re-

computed from the mapping G when the overset grid is regenerated.

In the physical variables ðx; yÞ, we obtain second-order accurate discrete approximations to the deriv-
atives (17)–(19)
of
ox

ðxi;jÞ � rxDr
0f þ sxDs

0f ; ð23Þ
of
oy

ðxi;jÞ � ryDr
0f þ syDs

0f ; ð24Þ
r2f ðxi;jÞ � ðr2x þ r2y ÞDr
þD

r
�f þ ðs2x þ s2yÞDs

þD
s
�f

þ 2ðrxsx þ rysyÞDr
0D

s
0f þ ðrxx þ ryyÞDr

0f þ ðsxx þ syyÞDs
0f ; ð25Þ

where the right-hand side is evaluated at index ði; jÞ. The finite difference approximation to each of the

Poisson problems for the pressure (11)–(14) is assembled in a sparse matrix and passed to a linear solver.

The interpolation and boundary conditions generate additional linear constraints which are placed in the

sparse matrix (see [10] for further details).

3.2. Solving the pressure equations

The discretization of the pressure Eqs. (11)–(13) in our simulations leads to a sparse linear system of

equations with 250,000–630,000 unknowns. The numerical solution of the resulting non-symmetric system

of linear equations is the major computational task in our numerical method.
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To solve the linear systems arising from the pressure equations, we use an iterative method with an

incomplete LU (ILU) preconditioner (see [33] and the references therein for a detailed discussion of the

linear solvers and preconditioners). Our implementation combines several well-known methods to achieve
significant performance improvement over the approaches used thus far. Earlier work with incompressible

flow on overset grids [18] used the generalized minimal residual method (GMRES) with an ILU(0) pre-

conditioner (no fill-in), which performs rather poorly; sparse direct factorization methods are much faster

for moderately sized time-stepping problems on fixed grids [10,18]. However, the cost of such a method in a

moving grid computation would be prohibitive.

We have found that an effective preconditioner for a Krylov space iterative method in the present case

can be formulated as follows:

(1) Rescale the the matrix so that each row has norm 1.
(2) Perform a reverse Cuthill–McKee (RCM) reordering of the matrix.

(3) Build an ILU(k) preconditioner with fill-in (k > 0, we use typically k ¼ 10).

The interpolation equations in the overset grid discretization make the sparsity pattern of the matrix non-

symmetric and irregular. This increases the fill-in of ILU factorization methods. The RCM reordering

reduces the bandwidth of the matrix, which results in a smaller ILU(k) factorization.
We use the stabilized bi-conjugate gradient method (BICG-STAB) with the preconditioner described

above to solve the pressure equations. The implementation [15] is based on the linear solver component in

PETSc [2] which we have interfaced to the Overture framework.
Table 1 compares the performance of several approaches. We consider a test case for the linear solver

with 2048 points at the interface, 438,644 discretization points in the overset grid, and 1,509,621 non-zeros

in the sparse matrix. We list in Table 1 the number of iterations (Its.) required to reach a residual of 10�8,

the time to form the preconditioner (Precond.), the time taken by the linear solver (solve), and their sum

(total¼ precond. + solve). All timings are given in seconds, and were measured on a single 250 MHz MIPS

R10000 processor of an SGI Origin 2000. The computations in Section 4.2 use BiCG-Stab with ILU(10),

which is almost 10 times faster than GMRES(30) with ILU(0).

The pressure solve remains the most expensive part of the method described in this paper. Multigrid
methods offer an even more efficient approach to solving elliptic (Poisson) equations in overset grid flow

simulations, and will be considered in future work (Henshaw, private communication).

3.3. Interface evolution

In this Subsection we discuss the numerical scheme for evolving the interface according to the kinematic

boundary condition (9).

3.3.1. Motivation for reformulating the interface equations

While it would be possible to discretize the kinematic boundary condition (9) explicitly in time, it is

advantageous to reformulate the problem to exploit the special structure of Eqs. (3)–(10) for the following
reasons: (1) Linear stability analysis (Section 4.1.1) suggests an explicit time stepping scheme would suffer
Table 1

Comparing the performance of different approaches to solving a Poisson problem on an overlapping grid (see text)

Method Its. Precond. Solve Total

GMRES(30)+ ILU(0) 755 1.2 879.0 880.2

BiCG-Stab+RCM+ILU(5) 60 6.6 125.8 132.4

BiCG-Stab+RCM+ILU(10) 36 12.6 78.5 91.1

BiCG-Stab+RCM+ILU(20) 18 36.9 59.3 96.2
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from a severe restriction of the form Dt6Cmin jDsj3, where min jDsj is the minimum spacing between

points along the discretized interface. (2) The flow is driven by the curvature j of the the interface, and so a

high-order accurate approximation to interfacial derivatives is desirable. (3) The interface is periodic, so
Fourier-spectral methods are efficient and highly accurate. (4) In the case of Newtonian viscous fingering

(We ¼ 0), the small scale decomposition of Hou, Lowengrub and Shelley [21] and an equal-arclength dis-

cretization reduces the stability restriction to Dt6CjDsj where Ds is a uniform spacing of points along the

interface, and C is a positive constant.

We use the small-scale decomposition for the Newtonian case [21] to reduce the stiffness of the time-

stepping scheme also in the case of weakly non-Newtonian viscous fingering. A similar approach was used

by Almgren et al. [1] to reduce the stiffness of a boundary integral scheme for Newtonian viscous fingering

with an anisotropic surface tension.

3.3.2. Evolution equations reformulated in a h–L frame

The kinematic boundary condition (15) is rewritten with new dependent variables: we define a tangent-

angle hðb; tÞ and arclength derivative sbðb; tÞ through
xbðb; tÞ ¼ sbðb; tÞ cos hðb; tÞ; ð26Þ
ybðb; tÞ ¼ sbðb; tÞ sin hðb; tÞ; ð27Þ
sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2b þ y2b

q
; ð28Þ

and use h and sb instead of xðb; tÞ and yðb; tÞ to evolve the interface shape C. A special choice of the

tangential velocity T (Eq. (31) below) keeps the parametrization of C in an equal arclength frame where the

arclength derivative sb ¼ LðtÞ=2p is constant in b, with LðtÞ the length of the boundary C at time t.
The kinematic boundary condition (15) is transformed to the tangent angle-length frame as (Appendix A)

Lt ¼ �
Z 2p

0

Uhb db
0: ð29Þ
ht ¼
2p
LðtÞ ðUb þ ThbÞ; ð30Þ
T ðb; tÞ ¼ T ð0; tÞ þ
Z b

0

hbU db0 � b
2p

Z 2p

0

hbU db0: ð31Þ

3.3.3. An integrating factor form using the small-scale decomposition

A detailed analysis [21] of the integral representation of the velocity in the case of Newtonian Hele–Shaw

flow reveals the dominant behavior of the normal velocity U in Eq. (30). In Fourier space, the dominant
part of the normal velocity for We ¼ 0 and large wavenumbers (k � 1) is [21]

Ûðk; tÞ � i

Ca
2pk
LðtÞ

���� ����2sgnðkÞĥðk; tÞ:
We express the tangent angle-length formulation in Eq. (30) as

LtðtÞ ¼ �
Z 2p

Uðb0; tÞhbðb0; tÞdb0; ð32Þ

0
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ĥtðk; tÞ ¼ � 1

Ca
2pk
LðtÞ

���� ����3ĥðk; tÞ þ F̂ ðk; tÞ; ð33Þ

where

F̂ ¼ 1

Ca
2pk
L

���� ����3ĥþ 2p
L

ikÛ
�

� 2p
L

dThb �: ð34Þ

3.3.4. Linear propagator time-discretization

An integrating factor expðwðk; tÞÞ exists for Eqs. (32) and (33) if we define

wðk; tÞ ¼
Z t 1

Ca
2pk
Lðt0Þ

� �3

dt0:

Using the integrating factor, we rewrite Eq. 33 as

o

ot
ðewðk;tÞĥðk; tÞÞ ¼ ewðk;tÞF̂ ðk; tÞ: ð35Þ

This is the form that is discretized in time and solved numerically.

Let the 2p-periodic interface xðb; tÞ be parametrized by bj ¼ jDb, 06 j6N � 1, where Db ¼ 1=N . We

introduce a discretized time tn, and let Ln denote the length of the interface, ĥnðkÞ denote ĥðk; tnÞ, and F̂ nðkÞ
denote F̂ ðk; tnÞ in Eq. (34) at time tn and wavenumber k. Define the integrals

Inj ¼
Z bj

0

hnb0U
n db0; �In ¼ �InN ¼

Z 2p

0

hnbU
n db: ð36Þ

These quadratures are evaluated using Fourier methods. For the integrating factor, we use the trapezoidal

rule and define

wn :¼ 1

2

1

Ca
2pk
Lnþ1

� �3
(

þ 2pk
Ln

� �3
)

¼ 1

Ca

Z tnþ1

tn

2pk
Lðt0Þ

� �3

dt0 þ OðDt3Þ:

We apply the second-order accurate Adams–Bashforth scheme to the integrating factor form in Eq. (35) to

obtain

Lnþ1 ¼ Ln � Dt
2
ð3�In � �In�1Þ; ð37Þ
ĥnþ1 ¼ e�wn
ĥn þ Dt

2
ð3e�wn

F̂ n � e�ðwnþwn�1ÞF̂ n�1Þ: ð38Þ

The length Lnþ1 is computed first, so the integrating factor expð�wnÞ can be evaluated directly when
computing ĥnþ1. The pseudospectral scheme (37) and (38) is semi-implicit, but the implicit part has been

solved directly using an integrating factor. The derivatives and integrals are computed in Fourier space, but

products of terms are computed in real space.
4. Numerical results

In this section, we present the results of numerical experiments of a gas bubble displacing a fluid in a
Hele–Shaw cell.
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4.1. Validation of the implementation

4.1.1. Linear stability analysis and the Saffman–Taylor instability

We consider the linear stability of a circular bubble of radius RðtÞ ¼ 1þ t perturbed azimuthally as it

expands into a non-Newtonian fluid in an unbounded Hele–Shaw cell. The circular interface is an exact

solution to the full Eqs. (3)–(10) with velocity and pressure field given by

uðr; tÞ ¼ StðtÞ
2pr

; pðr; tÞ ¼ 1

CaRðtÞ þ
StðtÞ
2p

ln
r

RðtÞ : ð39Þ

both in the Newtonian, and the weakly non-Newtonian case. The theoretical linearized growth rates of

perturbations are compared to growth rates extracted from simulations.

4.1.1.1. Linear theory. Assume C is given by

Rðh; tÞ ¼ RðtÞð1þ egðh; tÞÞr̂; ð40Þ

where e � 1 is a small parameter, r̂ is the radial unit vector, and gðh; tÞ is a perturbation.

Since gðh; tÞ can be written as a Fourier series in the azimuthal angle h, and the linearized equations are

separable, we consider without loss of generality a perturbation of the form

gðh; tÞ ¼ Nðm; tÞ cosmh; ð41Þ
where m is a wave number. In [16] it is shown that to leading order in e, the instantaneous growth rate

rm ¼ Nt=N is given by

rm ¼ �1þ m 1

�
þB

m� 1

mþ 1

�
þ Ca�1mð1� m2Þ 1

�
þB

2m
mþ 1

�
: ð42Þ

In this weakly non-Newtonian limit the non-Newtonian character of the fluid is contained in the single small

positive parameterB ¼ ð3=20Þð1� aÞWe2. Fig. 7 shows the analytic linear stability curves given by Eq. (42).

The key feature of Fig. 7 is that intermediate length-scales are unstable and the small length-scales

(modes with large m) are strongly damped, which leads to growth of intermediate length scale perturbations
of an expanding circle. This is true generally for the Saffman–Taylor instability.

In the simulations of this paper the initial data is always unstable to the Saffman–Taylor instability:

when Ca ¼ 250 and We6 0:55, modes 2–15 are unstable and mode 9 is dominant with the largest positive

growth rate; when Ca ¼ 500 and We6 0:55, modes 2–21 are unstable, and mode 13 is dominant with the

largest positive growth rate. As the radius of the circle grows, the band of unstable modes expands towards

larger wavenumbers.

4.1.1.2. Comparison with simulations. We use the results of linear stability analysis as a first check of our

numerical method. In our simulations, we consider perturbations of the form in Eqs. (40) and (41) with a

perturbation amplitude e ¼ 0:001, and modes m ¼ 1; . . . ; 25. For each perturbation mode m, the full

equations of motion (3)–(10) are solved for five time steps. The growth rate ~rm ¼ ĝt=ĝ of mode m is
computed from the simulation by a Fourier transformation of the perturbation

gðb; tÞ ¼ xðb; tÞ � RðtÞðcos b; sin bÞ

and a second-order finite difference approximation of ĝt from the computed mode amplitude ĝ.
In Fig. 8 we compare the analytic linear growth rates from Eq. (42) with growth rates obtained with the

full overset grid code for a non-Newtonian case with We ¼ 0:55, Ca ¼ 250, and Ca ¼ 500. The agreement
between theory and simulation is good, though for large wavenumbers, the growth rates from linear theory
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have slightly larger absolute amplitudes than the growth rates from the simulations. However, the large

wavenumber behavior is strongly dissipative in the problems considered here and has little effect on the

simulations as long as the wavenumbers with positive growth, and moderate damping are resolved. It is well

known that finite difference schemes do not capture high frequency phenomena accurately, so it is im-

portant to resolve the length scales of interest as has been done here (see Fig. 4.-1.-3. in [17]).
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Remark. It is standard practice in boundary integral simulations of interfacial instabilities to present nu-

merically computed linearized growth rates and compare those to analytical results as has been done in this

section (see [22] and references therein). However, in simulations of interfacial instabilities using finite

difference and finite element methods, it is unfortunately uncommon to present those results. Since the
linear instabilities are at the heart of many interfacial instabilities, it is important to discuss the fidelity of

the numerical scheme in capturing this key feature of the physical problem. In this paper, the use of Fourier

based methods to compute the curvature in the boundary condition (8) greatly improves the agreement with

linear theory at small length scales. Further details and a theoretical model will be reported elsewhere.

4.1.2. Simulations of an expanding circle

Here, we compare the exact solution for an expanding circle to our simulations and discuss the prop-

erties of the numerical errors. We simulate a circular interface expanding into a Newtonian fluid with
Ca¼ 250 and We¼ 0.55 to t ¼ 4 with Dt ¼ 10�3. These parameters define a problem that is unstable to the

Saffman–Taylor instability, with modes 2–15 unstable, and mode 9 having the largest initial growth rate

(see Fig. 7).

To examine the nature of spatial errors, and the effect of under-resolution, we use in these simulations:

• 64 points on the interface, 602 points in the Cartesian background grid,

• 128 points on the interface, 1202 points in the Cartesian background grid,

• 256 points on the interface, 2402 points in the Cartesian background grid.

The L1-errors in interface position are given in Table 2, and demonstrate second-order spatial accuracy
until time t ¼ 2. The order of convergence drops slightly below second-order before t ¼ 3 as the flow be-

comes under-resolved. Since the number of points on the interface is kept constant in this test, the spacing

between the points grows as the interface expands. This is different from the simulations of pattern for-

mation shown in Section 4.2 where the interfacial resolution is increased as needed. In Table 3, the point

spacings are shown for an expanding circle with N ¼ 256 points along the interface.

The interface is shown at several time steps t ¼ 0; . . . ; 4 in Fig. 9. The solution is visually indistin-

guishable from the exact solution. Nonetheless, there are grid induced errors in the solution that are not

visible in the plot. Fig. 10 shows the error in the radius as a function of the radial angle b for several time
steps. The plots show the error for two resolutions with N ¼ 128 and N ¼ 256 points along the interface.

The error has a structure that suggests that the Cartesian background grid can amplify the interfacial

velocity in the coordinate directions as the error in the radius has maxima at angles b ¼ 0, p=2, p, 3p=2 and

2p coinciding with the directions of the x and y axes. From the linear stability analysis one would not expect

mode 4 to be dominant as is seen in Fig. 10; mode 9 would be expected to grow the fastest since it has the

largest growth rate. However, only perturbations that are present can be amplified by the dynamics. It

seems that discretization errors give rise to a mode 4 perturbation of the circular interface which is then

amplified by the Saffman–Taylor instability.
Table 2

Errors and convergence rates for a circular bubble expanding into a Newtonian fluid with Ca ¼ 250

Maximum error in interface position

t ¼ 0:5 t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4

N ¼ 128 2.9319	 10�3 5.2375	 10�3 9.5074	 10�3 1.3711	 10�2 1.8997	 10�2

N ¼ 256 6.8139	 10�4 1.2264	 10�3 2.3069	 10�3 3.5213	 10�3 5.0478	 10�3

Rate 2.1053 2.0944 2.0431 1.9612 1.9120

N denotes the number of discretization points along the interface. The second-order convergence can be seen until t ¼ 2. Since the

length of the interface is growing in time and number of discretization points is kept fixed, the flow becomes under-resolved after t ¼ 2.

A slight drop in convergence rate can be seen at t ¼ 3 and t ¼ 4.
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Fig. 9. A long time simulation of a circular interface expanding into a Newtonian fluid with Ca¼ 250 and We¼ 0.0 for 4000 timesteps

(T ¼ 0; . . . ; 4). The solution is visually indistinguishable from the exact solution. See Fig. 10 for the structure of the error in this

solution.

Table 3

The exact radius for the expanding circle

Exact radius and grid spacing for N ¼ 256

t ¼ 0:5 t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4

RðtÞ 1.5000 2.0000 3.0000 4.0000 5.0000

Spacing along interface 0.0368 0.0491 0.0736 0.0982 0.1227

Since the interfacial resolution is kept constant in this test, the spacing of discretization points along the interface grows as the

interface expands. Here, the spacings are shown for an expanding circle with N ¼ 256 points along the interface. In the simulations of

Section 4.2, the maximum spacing along the interface is 0.024.
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Ultimately, the successful control of grid induced errors will be what limits the maximum temporal

length of simulations of interfacial instabilities using grid based methods. Our use of body fitted grids

improves the accuracy of the solution near the interface, where the velocity of the interface is computed

from the pressure using Darcy�s law (5) and (6). The errors here depend on the resolution as Oðh2Þ where h
is a maximum spacing in the mesh. Hence, adequate spatial resolution and high-order methods will min-
imize systematic discretization induced errors and allow longer simulations.

Note that in the present scheme, these grid alignment errors are not significant for the length of sim-

ulations considered here even at the lower resolutions used in Figs. 9 and 10. The asymmetric simulations

discussed below begin with N ¼ 512 points along the interface, and are restarted at higher resolutions to

enhance accuracy with up to N ¼ 4096 points along the interface at the end of a simulation.

As a further check for grid induced anisotropy, we consider an interface which is initially a circle per-

turbed radially by a single mode
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ðx0ðbÞ; y0ðbÞÞ ¼ rðbÞðcos b; sin bÞ;

where

rðbÞ ¼ 1þ 0:1 cos 4b:

For comparison, we simulate this initial data, as well as the same data rotated 22.5� counter-clockwise,

expanding into a weakly non-Newtonian fluid (We ¼ 0:55, Ca ¼ 200) using 512 points on the interface
(Fig. 11). The four-fold symmetry is not enforced by the numerical scheme, but is still preserved by the

dynamics.

4.2. Simulation of the Saffman–Taylor instability

We now consider the Saffman–Taylor instability in a weakly non-Newtonian fluid whose dynamics is

given by Eqs. (6)–(9). The basic elements of pattern formation for a gas bubble expanding into a Newtonian

fluid in a radial Hele–Shaw cell are well understood from experiment [30], theory [3,37] and careful nu-

merical simulation [21]. Very roughly, a perturbation of the bubble interface grows outwardly into an

expanding petal. When this petal�s radius of curvature exceeds the wavelength of an unstable mode, it ‘‘tip-

splits’’ into two nascent petals, which themselves broaden and split. This repeated process yields an in-
terface described by a population of branches and fjords, and whose evolution is characterized by strong

competition among the branches, with some branches being ‘‘shielded’’ and retracting, and others
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advancing further into the fluid. Clearly, if tip-splitting can be suppressed a much different pattern mor-

phology will follow.
Kondic et al. [25] considered viscous fingering in a strongly shear-thinning fluid modeled by the non-

Newtonian Darcy�s law (2) in a radial geometry. These computations, although limited to four-fold sym-
Newtonian: We = 0 , Ca = 250.
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Fig. 13lWe ¼ 0:55, fort¼0; . 5:2, in increments of 0l1.
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metric interfaces, and to the early stages of the Saffman–Taylor instability, suggest that shear-thinning of

the fluid can lead to reduced tip-splitting at small Weissenberg numbers We < 0:50 (see also [16]).

Poir�e and Ben Amar [31] have used our generalized Darcy�s law (2) to study the formation of ‘‘fractures’’
or ‘‘cracks’’ in clays and associating polymer solutions [31]. Using a shear-thinning power-law fluid, they

examined the ‘‘width selection’’ problem for a gas finger propagating steadily down a channel in a Hele–

Shaw cell. They consider the displaced fluid to be slightly shear-thinning, and show that within this as-

ymptotic limit the selected finger width decreases to zero (i.e. a crack) as surface tension goes to zero.

In Figs. 12–15, we consider evolution of the interface at different capillary numbers, and compare

Newtonian computations (We ¼ 0) with weakly non-Newtonian computations (We ¼ 0:55). As initial data

we take

ðx0ðbÞ; y0ðbÞÞ ¼ rðbÞðcos b; sin bÞ;

where

rðbÞ ¼ 1þ 0:1ðcos 3bþ sin 2bÞ;

as in [21], and study the effects the variations in the capillary number Ca and the Weissenberg number We
has on the dynamics of the evolving interface. In all cases this initial data are unstable to the Saffman–

Taylor instability.

We start each simulation with 512 points on the interface, and double the resolution as needed to resolve

it, up to a resolution of 4096 points. The spacing along the interface is always kept in the range

0:0126Ds6 0:024. The sizes of the grids we use to discretize the fluid domain at the different resolutions are
Non-Newtonian: We = 0 .55, α = 0 .15, Ca = 250.
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summarized in Table 4. The maximum resolution used in our simulations is 4096 points along the interface

and 632,691 unknowns in the pressure equation. The time-step is in the range Dt ¼ 0:5	 10�3; . . . ; 2	 10�3

in all cases considered here.

Fig. 12 shows the evolution of an interface expanding into a a Newtonian fluid at Ca ¼ 250. The re-

sulting fingering pattern is of tip-splitting type, and in qualitative agreement with experiment [30]. (We note

that even more developed patterns have been computed using boundary integral methods [21].)
The bubble evolution over long times in a weakly non-Newtonian fluid can differ significantly from the

Newtonian case, as is illustrated by Fig. 13. The shear-thinning effect has reduced the number of tip-

splittings, and yields fingers that are narrower than those formed in the Newtonian case. In some fingers

one can see interface shapes reminiscent of side-branching, which is a non-Newtonian characteristic that

has been observed in previous studies [16].

In Figs. 14 and 15, we consider simulations with a relatively small surface tension Ca ¼ 500. Note that

the scale in these figures differs from that used in Figs. 12–15.

The resulting fingering pattern for We ¼ 0 (Fig. 14) has a strongly Newtonian character, with several tip-
splittings, finger competition, and a relatively isotropic pattern at the final time t ¼ 3:4. For We ¼ 0:55
(Fig. 15), we see some non-splitting fingers, which have a distinctly non-Newtonian character. The initial

tri-modal structure is still clearly visible in the non-Newtonian case at the final time, unlike in the New-

tonian case. Several side-branched fingers can be seen, which is a non-Newtonian characteristic indicating a

tip-splitting event that has been stopped by the shear-thinning effect.

Similar flows have been computed previously [16,25]. The fluid interface here, in Figs. 14 and 15, has

developed far more structure than in the simulations with strongly shear thinning fluids using a lesser

number of points along the interface. Further, no symmetries have been imposed.
or



Non-Newtonian: We = 0 .55, α = 0 .15, Ca = 500.
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Table 4The size of the

11 480	

480 60	

600 272,032

1024 1024	

11 705	

705 85	

1066 598,899

2048 2048	

11 705	

705 85	

1066 610,163

4096 4096	

11 705	

705 85	

1066 632,691

TheTotal

lists the total number of unknowns in the discretization of the pressure equation, and includes also ghostpoints andinterpolation conditions.
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In Fig. 15 we show close-ups of the moving overset grids near a splitting finger, at times t ¼ 2:4, t ¼ 2:9
and t ¼ 3:4. The component grids are generated automatically, and adapt to the shape of the evolving air/

fluid interface.

An intuitive understanding of the source of reduced tip-splittings can be gained by studying the viscosity

field: Fig. 3 shows the weakly non-Newtonian viscosity (7) in the fluid external to the bubble at the final

time t ¼ 3:4 in Fig. 15. We see that the lowest viscosity occurs at the ends of the petals, and that the

viscosity increases as one moves away from the tips.
It is this phenomena that results in the narrowed petals observed from the non-linear development of the

Saffman–Taylor instability: the fluid velocity is locally accentuated by the non-Newtonian effect, which

pulls the interface outwards at the tips. Thus, a tip remains a tip, and thereby the conditions for a lower

local viscosity are maintained. Of course, this effect is limited by capillarity, which seeks to lower the length
anding air/fluid interface in a moving overset grid simulation of non-Newtonian Hele–Shaw flow atcomponent grids used in the discretization of the fluid domain formpoints on the interfacemBody fitted grid Cartesian grid Outer grid Total512 512	



Fig. 16. A close-up of the computational grid used in Fig. 3, and the viscosity field, near the interface at times t ¼ 2:4, t ¼ 2:9 and

t ¼ 3:4. Here We ¼ 0:55, a ¼ 0:15 and Ca ¼ 500 (see Figs. 3, 4 and 15).
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to area ratio. We note that the viscosity in our weakly non-Newtonian computations varies only by 5%,

from �l ¼ 1:0 in the fjords to �l ¼ 0:95 at the tips. This variation is sufficiently large to induce significant

changes in the pattern formation process. In Fig. 16, we show a close-up of the viscosity field in Fig. 3 near

the interface.
5. Conclusions

In this paper we have developed a moving overset grid method for simulating the dynamics of fluid

interfaces. The key feature of this method is the use of a thin body fitted grid that conforms to the de-

forming time dependent boundary and is coupled to fixed Cartesian grids.

We have studied computationally the non-Newtonian Saffman–Taylor instability in a weakly shear-

thinning limit. In the case of an expanding circular interface, second-order accuracy was demonstrated in

the interface position. We have also demonstrated good agreement with linear theory, which is a key feature
of linear instabilities such as the Saffman–Taylor problem [34]. The effect of grid alignment errors was

quantified in test cases, and shown to be insignificant for the length of simulations considered here. Sim-

ulations of asymmetric interfacial bubbles agree with predictions of reduced tip-splittings and increased
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side-branching in non-Newtonian Hele–Shaw flow suggested by earlier theoretical and computational

studies [11,25,27].

Moreover, the present method is able to achieve highly ramified viscous fingering patterns that are
beginning to approach the level of detail seen in spectrally accurate boundary integral computations [21].

Improved numerical approaches to evolving the interface efficiently, and especially accurately, will also

allow a computation of non-Newtonian viscous fingering patterns in the strongly non-Newtonian case.

Long-time simulations have been performed for Newtonian flows [21], but only for intermediate time-scales

in strongly shear-thinning flows [25].

While the focus here is on shear-thinning fluids, it would also be of interest to simulate viscous fin-

gering in shear-thickening fluids where the local viscosity is an increasing function of the shear-rate. In

recent work, Constantin, Widom and Miranda [11] perform a weakly non-linear analysis of non-New-
tonian viscous fingering, and find mode-coupling conditions that in the shear-thickening case suggest

finger widening and enhanced tip-splitting of the interface. In the shear-thinning case, their analysis

predicts a reduction of tip-splitting and increased side-branch formation, which supports the findings in

this paper.

There is a wealth of fundamental questions to be answered on non-Newtonian Hele–Shaw flows. A

central one is the effect of the elastic response of the fluid (see [27] and the references therein). The non-

Newtonian Darcy�s law captures the non-Newtonian response of the bulk fluid for moderate Weissenberg

numbers, We ¼ Oð1Þ. Fast [13] performed a matched asymptotic analysis of the flow near the meniscus
where Darcy�s law is not valid, and derived non-Newtonian corrections to the Young–Laplace boundary

condition (8). The analysis [13] suggests that as We is increased, shear-thinning effects near the meniscus

become important and should be included in the pressure boundary conditions (see, however, the dis-

cussion in [16]). At still higher Weissenberg numbers the bulk flow will continue to be described by Eq. (2)

but elastic effects at the interface will become important: Boundary conditions for this case have not yet

been developed. Finally, in the high Weissenberg number limit, elastic effects in the bulk will become

important and a new model of thin gap flow is needed to capture the full viscoelastic response in the fluid

in a quasi-two dimensional setting. In some cases boundary integral methods will be applicable to
compute such flows, but in many cases grid based methods such as the one developed here will be

necessary.

Many other moving interface problems of current interest in fluid dynamics can be studied with an

extension of the ideas presented in this paper. In recent work, Zhang et al. [38] considered experimentally

the dynamics of an elastic filament pinned at its leading edge in a quasi-two dimensional soap-film flow. The

flow interacts with the moving filament, generating vorticity that is shed at its freely moving end. The

vorticity organizes itself into a structure reminiscent of a von Karman vortex street superimposed on a large

scale traveling wave shape reflecting the flapping of the filament. One of us (P.F.) has been investigating a
moving overset grid method that will resolve the multiple length scales present in the vorticity structure and

perhaps capture the dynamics of this intriguing dynamic boundary flow. Preliminary results are available in

Fast and Henshaw [14].
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Appendix A. The h–L formulation

To control the stiffness of the time-evolution problem, we reformulate the motion of the interface in

terms of the tangent angle hðb; tÞ and arclength sb. For completeness, we derive here the equations of

motion in the h–sb frame, as in [21,36].
Let the interface be given by the closed curve xðb; tÞ, where b 2 ½0; 2p� is the parametrization and t is

time. Let s be the tangent vector to the curve, and n the inward pointing normal vector. The evolution of the

interface is described by

xt ¼ Unþ T s; ðA:1Þ

where U is the normal velocity that describes the physics of the problem. The tangential velocity T has no

physical meaning, and is specified later.

The tangent angle h is related to the curve x through

xbðb; tÞ ¼ sbðb; tÞ cos hðb; tÞ; ybðb; tÞ ¼ sbðb; tÞ sin hðb; tÞ:

The Fr�enet formulas oss ¼ jn, osn ¼ �js can be used to express the curvature as

j ¼ hs: ðA:2Þ

The h–sb equations are found by taking a b derivative of Eq. (A.1) and using the Fr�enet formulas

otobxðb; tÞ ¼ otfsbðcos hðb; tÞ; sin hðb; tÞÞg ¼ Ubnþ Tbsþ Uð�sbjsÞ þ T ðsbjnÞ;

and hence h and sb satisfy

otsb ¼ Tb � hbU ; ðA:3Þ
oth ¼ 1

sb
fUb þ Thbg: ðA:4Þ
Appendix B. Algorithm for body fitted grid generation

In this section, we discuss the details of generating the body fitted grid using Eq. (16). The use of this

equation for grid generation is discussed by Sethian [35].

We solve the body fitted grid generation Eq. (16) using the h–L formulation

oh
on

ðg; nÞ ¼ 2p
LðnÞ

oU
on

�
þ T

oh
og

�
; ðB:1Þ
oL
on

ðg; nÞ ¼ �
Z 2p

0

oh
og0

ðg0; nÞUðg0; nÞdg0; ðB:2Þ

where

Uðg; nÞ ¼ �1þ Cjðg; nÞ ¼ �1þ C
2p
LðnÞ

oh
og

ðg; nÞ ðB:3Þ

and
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T ðg; nÞ ¼
Z g

0

oh
og0

ðg0; nÞUðg0; nÞdg0 � g
2p

Z 2p

0

oh
og0

ðg0; nÞUðg0; nÞdg0: ðB:4Þ

Here C is a small parameter. The initial data at n ¼ 0 is given by the fluid interface C. Eqs. (B.1)–(B.4) are
solved in Fourier space in g using a second-order accurate integrating factor Adams–Bashforth method to

discretize the time-like variable n (see Section 3.3).

Remark. The �grid generation equation� (16) is completely separate from the equations of motion for the

fluid interface. The only purpose of solving this equation at a given time is to generate a body fitted grid.

Any other approach that produces a body fitted grid near the fluid interface could be used just as well.
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